Jump to main content
Jump to site search

Issue 13, 2017
Previous Article Next Article

Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

Author affiliations

Abstract

Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER–MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.

Graphical abstract: Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Apr 2017, accepted on 04 Jun 2017 and first published on 07 Jun 2017


Article type: Paper
DOI: 10.1039/C7LC00412E
Citation: Lab Chip, 2017,17, 2294-2302
  •   Request permissions

    Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities

    B. M. Maoz, A. Herland, O. Y. F. Henry, W. D. Leineweber, M. Yadid, J. Doyle, R. Mannix, V. J. Kujala, E. A. FitzGerald, K. K. Parker and D. E. Ingber, Lab Chip, 2017, 17, 2294
    DOI: 10.1039/C7LC00412E

Search articles by author

Spotlight

Advertisements