Jump to main content
Jump to site search

Issue 10, 2017
Previous Article Next Article

Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods

Author affiliations

Abstract

The classification and identification of coal ash contributes to recycling and reuse of metallurgical waste. This work explores the combination of the laser-induced breakdown spectroscopy (LIBS) technique and independent component analysis-wavelet neural network (ICA-WNN) for the classification analysis of coal ash. A series of coal ash samples were compressed into pellets and prepared for LIBS measurements. At first, principal component analysis (PCA) was used to identify and remove abnormal spectra in order to optimize the training set for the WNN model. And then, ICA was employed to select and optimize input variables for the WNN model. The classification of coal ash was carried out by using the WNN model with optimized model parameters (the number of hidden neurons (NHN), the number of iterations (NI), the learning rate (LR) and the momentum) and input variables optimized by ICA. Under the optimized WNN model parameters, the coal ash samples for test sets were identified and classified by using WNN and artificial neural network (ANN) models, and the WNN model shows a better classification performance. It was confirmed that the LIBS technique coupled with the WNN method is a promising approach to achieve the online analysis and process control of the coal industry.

Graphical abstract: Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods

Back to tab navigation

Publication details

The article was received on 16 Jun 2017, accepted on 03 Aug 2017 and first published on 03 Aug 2017


Article type: Paper
DOI: 10.1039/C7JA00218A
Citation: J. Anal. At. Spectrom., 2017,32, 1960-1965
  •   Request permissions

    Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods

    T. Zhang, C. Yan, J. Qi, H. Tang and H. Li, J. Anal. At. Spectrom., 2017, 32, 1960
    DOI: 10.1039/C7JA00218A

Search articles by author

Spotlight

Advertisements