Jump to main content
Jump to site search

Issue 8, 2017
Previous Article Next Article

Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools

Author affiliations

Abstract

DNA–protein interactions are at the core of the cellular machinery and single molecule methods have revolutionized the possibilities to study, and our understanding of these interactions on the molecular level. Nanofluidic channels have been extensively used for studying single DNA molecules during the last twelve years and in this review, we discuss how this experimental platform has been extended to studies of DNA–protein interactions. We first present how the design of the device can be tailored for the specific DNA–protein system studied and how the channels can be passivated to avoid non-specific binding of proteins. We then focus on describing the different kinds of DNA-interacting proteins that have been studied in nanofluidic devices, including proteins that compact DNA and proteins that form filaments on DNA. Our main objective is to highlight the diverse functionalities of DNA–protein systems that have been characterized using nanofluidic structures and hence demonstrate the versatility of these experimental tools. We finally discuss potential future directions studies of DNA–protein complexes in nanochannels might take, including specific DNA–protein systems that are difficult to analyze with traditional techniques, devices with increased complexity, and fully integrated lab-on-a-chip devices for analysis of material extracted from (single) cells.

Graphical abstract: Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools

Back to tab navigation

Publication details

The article was received on 09 May 2017, accepted on 22 Jun 2017 and first published on 22 Jun 2017


Article type: Review Article
DOI: 10.1039/C7IB00085E
Citation: Integr. Biol., 2017,9, 650-661
  •   Request permissions

    Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools

    K. Frykholm, L. K. Nyberg and F. Westerlund, Integr. Biol., 2017, 9, 650
    DOI: 10.1039/C7IB00085E

Search articles by author

Spotlight

Advertisements