Jump to main content
Jump to site search

Issue 7, 2017
Previous Article Next Article

The maximum penalty criterion for ridge regression: application to the calibration of the force constant in elastic network models

Author affiliations

Abstract

Tikhonov regularization, or ridge regression, is a popular technique to deal with collinearity in multivariate regression. We unveil a formal analogy between ridge regression and statistical mechanics, where the objective function is comparable to a free energy, and the ridge parameter plays the role of temperature. This analogy suggests two novel criteria for selecting a suitable ridge parameter: specific-heat (Cv) and maximum penalty (MP). We apply these fits to evaluate the relative contributions of rigid-body and internal fluctuations, which are typically highly collinear, to crystallographic B-factors. This issue is particularly important for computational models of protein dynamics, such as the elastic network model (ENM), since the amplitude of the predicted internal motion is commonly calibrated using B-factor data. After validation on simulated datasets, our results indicate that rigid-body motions account on average for more than 80% of the amplitude of B-factors. Furthermore, we evaluate the ability of different fits to reproduce the amplitudes of internal fluctuations in X-ray ensembles from the B-factors in the corresponding single X-ray structures. The new ridge criteria are shown to be markedly superior to the commonly used two-parameter fit that neglects rigid-body rotations and to the full fits regularized under generalized cross-validation. In conclusion, the proposed fits ensure a more robust calibration of the ENM force constant and should prove valuable in other applications.

Graphical abstract: The maximum penalty criterion for ridge regression: application to the calibration of the force constant in elastic network models

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Apr 2017, accepted on 17 May 2017 and first published on 18 May 2017


Article type: Paper
DOI: 10.1039/C7IB00079K
Citation: Integr. Biol., 2017,9, 627-641
  •   Request permissions

    The maximum penalty criterion for ridge regression: application to the calibration of the force constant in elastic network models

    Y. Dehouck and U. Bastolla, Integr. Biol., 2017, 9, 627
    DOI: 10.1039/C7IB00079K

Search articles by author

Spotlight

Advertisements