Jump to main content
Jump to site search

Issue 3, 2017
Previous Article Next Article

Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation

Author affiliations

Abstract

Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca2+ and H2O2. Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H2O2 and Ca2+, during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.

Graphical abstract: Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 06 Sep 2016, accepted on 26 Jan 2017 and first published on 30 Jan 2017


Article type: Paper
DOI: 10.1039/C6IB00186F
Citation: Integr. Biol., 2017,9, 238-247
  •   Request permissions

    Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation

    A. S. Kniss-James, C. A. Rivet, L. Chingozha, H. Lu and M. L. Kemp, Integr. Biol., 2017, 9, 238
    DOI: 10.1039/C6IB00186F

Search articles by author