Jump to main content
Jump to site search


Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems

Author affiliations

Abstract

Chemical PEGylation of proteins has been used to improve their physicochemical properties and kinetics. However, the PEGylation reactions lead to a heterogeneous mixture of PEGylated conjugates and unreacted protein, which is a challenge for the design of an efficient downstream process. The purification of PEGylated proteins should address the two main issues: the separation of PEGylated conjugates from the unreacted protein and the fractionation of the PEGylated conjugates on the basis of their degree of PEGylation. The present study aims at the development of liquid–liquid extraction processes for the purification of PEGylated conjugates. An initial study of the partition behavior of cytochrome c and their PEGylated conjugates (Cyt-c-PEG-4 and Cyt-c-PEG-8) on polyethylene-glycol (PEG) + potassium phosphate buffer (pH = 7) aqueous biphasic systems (ABS) shows that PEGs with intermediate molecular weights (PEG MW = 1000–2000) allow the separation of the PEGylated conjugates from the unreacted protein in a single step. It is further shown that the PEGylated conjugates can be efficiently separated using ABS based on PEGs with high molecular weight (PEG MW = 6000–8000) and a study of the protein stability after purification was carried using circular dichroism. A downstream process to separate Cyt-c, Cyt-c-PEG-4 and Cyt-c-PEG-8 with high purities (96.5% Cyt-c, 85.8% Cyt-c-PEG-4, and 99.0% Cyt-c-PEG-8) was developed. The process proposed addresses not only the efficient separation of each of the protein forms but also the recycling of the unreacted protein purified and the ABS phases, which was successfully used in a new step of PEGylation.

Graphical abstract: Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Aug 2017, accepted on 17 Oct 2017 and first published on 02 Nov 2017


Article type: Paper
DOI: 10.1039/C7GC02600E
Citation: Green Chem., 2017, Advance Article
  •   Request permissions

    Multistep purification of cytochrome c PEGylated forms using polymer-based aqueous biphasic systems

    J. H. P. M. Santos, G. Carretero, J. A. P. Coutinho, C. O. Rangel-Yagui and S. P. M. Ventura, Green Chem., 2017, Advance Article , DOI: 10.1039/C7GC02600E

Search articles by author

Spotlight

Advertisements