Issue 7, 2017

Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance

Abstract

Mitochondrial biogenesis, which involves an increase in mitochondrial number and the overall capacity of oxidative phosphorylation, is a critical determinant of skeletal muscle function. Recent findings have shown that some natural products can enhance mitochondrial adaptation to aerobic exercise, which in turn improves exercise performance, presumably by delaying muscle fatigue. Ursolic acid (UA), a natural triterpene, is commonly found in various vegetables and fruits. In the current study, UA was shown to increase mitochondrial mass and ATP generation capacity, with a concomitant production of a low level of mitochondrial reactive oxygen species (ROS) in C2C12 myotubes. Mitochondrial ROS, in turn, activated the redox sensitive adenosine monophosphate-dependent protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1(PGC-1) pathway. The activation of AMPK/PGC-1 further increased the expression of cytochrome c oxidase (COX) and uncoupling protein 3. Animal studies showed that UA can also dose-dependently increase the endurance exercise capacity in mice, as assessed by a weight-loaded swimming test and a hanging wire test. Our findings suggest that UA may induce mitochondrial biogenesis through the activation of AMPK and PGC-1 pathways in skeletal muscle, thereby offering a promising prospect for its use to enhance exercise endurance and alleviating fatigue in humans.

Graphical abstract: Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance

Article information

Article type
Communication
Submitted
24 Jan 2017
Accepted
14 Jun 2017
First published
15 Jun 2017

Food Funct., 2017,8, 2425-2436

Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance

J. Chen, H. S. Wong, P. K. Leong, H. Y. Leung, W. M. Chan and K. M. Ko, Food Funct., 2017, 8, 2425 DOI: 10.1039/C7FO00127D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements