Issue 4, 2017

Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: involvement of AMP-activated protein kinase

Abstract

The beneficial effects of fish oil consumption on glucose metabolism have been generally reported. However, the mechanism underlying the fish oil-induced protective effects against insulin resistance remains unclear. Endoplasmic reticulum (ER) stress is recognized as an important contributor to insulin resistance. The aim of this study is to evaluate whether fish oil supplementation reduces ER stress and ameliorates insulin resistance in diet-induced obese mice, and to investigate the molecular mechanism of fish oil-induced benefits on ER stress. C57BL/6J mice were fed one of the following diets for 12 weeks: the low-fat diet (LFD), the high-fat diet (HFD) or the fish oil-supplemented high-fat diet (FOD). Fish oil supplementation led to lower blood glucose, better glucose tolerance and improved insulin sensitivity in high-fat diet-induced obese mice. Importantly, fish oil administration inhibited high-fat feeding-induced ER stress and reduced adipose tissue dysfunction. The fish oil-induced improvements were accompanied by the elevation of phosphorylated AMP-activated protein kinase (AMPK) expression in white adipose tissue. Correspondingly, the results of in vitro experiments showed that docosahexaenoic acid (DHA), the main n-3 polyunsaturated fatty acid (PUFA) in the fish oil used in the study, led to a dose-dependent increase in AMPK phosphorylation and suppressed palmitic acid (PA)-triggered ER stress in differentiated 3T3-L1 adipocytes. Furthermore, AMPK inhibitor (compound C) treatment largely blocked the effects of DHA to inhibit PA-induced ER stress. Our data indicate that n-3 PUFAs suppress ER stress in adipocytes through AMPK activation, and may thereby exert protective effects against high-fat feeding-induced adipose tissue dysfunction and insulin resistance.

Graphical abstract: Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: involvement of AMP-activated protein kinase

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2016
Accepted
02 Mar 2017
First published
14 Mar 2017

Food Funct., 2017,8, 1481-1493

Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: involvement of AMP-activated protein kinase

W. Yang, X. Chen, M. Chen, Y. Li, Q. Li, X. Jiang, Y. Yang and W. Ling, Food Funct., 2017, 8, 1481 DOI: 10.1039/C6FO01841F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements