Jump to main content
Jump to site search

Issue 3, 2017
Previous Article Next Article

Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells

Author affiliations

Abstract

The aim of this study was to investigate the molecular mechanism underlying the immunomodulatory effect of the purified Artemisia sphaerocephala Krasch seed polysaccharide (ASKP-1) in RAW264.7 macrophages. Chemical characteristic analysis revealed that ASKP-1 consisted of 14.1% mannose, 56.9% glucose and 19.6% galactose with the average molecular weight of 9.08 × 105 Da and the mixed glycan backbone structure containing 1→4)-Glcp (39.8%), 1→6)-Galp (18.8%), 1→3,6)-Manp (19.6%), 1→)-Glcp (10.8%), 2→6)-Manp (4.0%) and 2→3,5)-Araf (7.0%). In vitro studies showed that ASKP-1 markedly induced the release of cytotoxic molecules (NO and ROS) and secretion of the cytokines (TNF-α, INF-β, and IL-6) and significantly enhanced the phagocytosis of RAW264.7 macrophages. Furthermore, TLR4 was found to be a recognized target of ASKP-1 and its related mitogen-activated protein (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt, including phosphorylated ERK, JNK, p38 and Akt, were rapidly activated by ASKP-1 in RAW264.7 macrophages. Moreover, ASKP-1 was found to cause the nuclear translocation of the nuclear factor NF-κB subunit p65 and the degradation of IκB-α in RAW264.7 macrophages. All these findings suggest that MAPK, PI3K/Akt and NF-κB pathways are involved in ASKP-1-induced macrophage activation, and ASKP-1 is a potential immunomodulating function food.

Graphical abstract: Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells

Back to tab navigation

Publication details

The article was received on 21 Nov 2016, accepted on 17 Feb 2017 and first published on 20 Feb 2017


Article type: Paper
DOI: 10.1039/C6FO01699E
Citation: Food Funct., 2017,8, 1299-1312
  •   Request permissions

    Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells

    D. Ren, D. Lin, A. Alim, Q. Zheng and X. Yang, Food Funct., 2017, 8, 1299
    DOI: 10.1039/C6FO01699E

Search articles by author

Spotlight

Advertisements