Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.

Colloidal characterization of CuO nanoparticles in biological and environmental media

Author affiliations


The relationships between the physicochemical properties of engineered nanomaterials (ENMs) and their adverse health and environmental effects are still unclear. In order to understand key nano-bio/eco interactions and to convert this knowledge into “Safety by Design” (SbyD) strategies, it is essential to study the colloidal properties of ENMs in nano(eco)toxicology-relevant media. In the frame of such a SbyD approach, this paper investigates the dispersion stability of copper oxide NPs surface-modified by means of four stabilizing agents, namely, [polyethylenimine (PEI), sodium ascorbate (ASC), sodium citrate (CIT), and polyvinylpyrrolidone (PVP)], which were used to achieve positive (PEI), negative (ASC, CIT), and neutral (PVP) surface charging of the NPs. The effects of these four stabilizers on the CuO NPs' physicochemical properties were investigated in different biological and environmental media by combining dynamic and electrophoretic light scattering (DLS and ELS), centrifugal separation analysis (CSA) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The results showed improved dispersion stability for CuO-CIT, CuO-ASC, and CuO-PEI in both Milli-Q and phosphate buffered saline (PBS) as compared to pristine CuO and CuO-PVP. The increased ionic strength of artificial fresh (AFW) and marine (AMW) waters strongly destabilized all the CuO NP suspensions, except for CuO-PEI dispersed in AFW. The presence of proteins and amino acids in the test media had a strong influence on the colloidal stability of all the dispersions. Characterization of colloidal properties and ion release rates in (eco)toxicological testing media will help to correlate some of these properties with (eco)toxicological responses, thus enabling prediction of the behavior of NPs in real environments.

Graphical abstract: Colloidal characterization of CuO nanoparticles in biological and environmental media

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 24 Nov 2016, accepted on 21 Mar 2017 and first published on 22 Mar 2017

Article type: Paper
DOI: 10.1039/C6EN00601A
Citation: Environ. Sci.: Nano, 2017, Advance Article
  •   Request permissions

    Colloidal characterization of CuO nanoparticles in biological and environmental media

    S. Ortelli, A. L. Costa, M. Blosi, A. Brunelli, E. Badetti, A. Bonetto, D. Hristozov and A. Marcomini, Environ. Sci.: Nano, 2017, Advance Article , DOI: 10.1039/C6EN00601A

Search articles by author