Jump to main content
Jump to site search

Issue 1, 2018
Previous Article Next Article

A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models

Author affiliations

Abstract

We apply multimedia models to systematically evaluate the fate profile of cyclic volatile methyl siloxanes (VMS) D4, D5 and D6, and the linear VMS L4 and L5 using recently reported measurements of their partition ratios between organic carbon and water (KOC), their salting out constants (Ks), and their enthalpy of sorption to organic carbon (ΔHOC). Our assessment follows a multi-stage strategy where the environmental fate of the chemicals is explored in generic regional models with increasing fidelity to the real system and in a region-specific model. Modeled emissions of VMS to air remained in air and were degraded or advected out of the system with overall residence times ranging from 2.4 to 2.5 days, while emissions to water resulted in accumulation in sediment and longer residence times ranging from 29.5 to 1120 days. When emitted to water the modeled residence times of VMS in the sediment exceeded the REACH criterion for persistence in freshwater sediments. Reported KOC measurements for D5 differ by 1 log unit, which results in a 500-day difference in the overall residence times calculated in the generic regional modeling. In the specific-region modeling assessment for Adventfjorden, Svalbard in Norway, the different KOC measurements of D5 resulted in a 200-day difference in overall residence times. Model scenarios that examined combinations of previously published ΔHOC or enthalpy of phase change between octanol and water (ΔHOW) for D5 in combination with the range of the KOC measurements resulted in 1100-days difference in overall residence times. Our results demonstrate that residence times of VMS in aquatic systems are highly sensitive to their degree of sorption to organic carbon, and that residence times of VMS likely exceed several persistence criteria and therefore they cannot be considered as non-persistent.

Graphical abstract: A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models

Back to tab navigation

Publication details

The article was received on 01 Nov 2017, accepted on 18 Dec 2017 and first published on 18 Dec 2017


Article type: Paper
DOI: 10.1039/C7EM00524E
Citation: Environ. Sci.: Processes Impacts, 2018,20, 183-194
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A critical assessment of the environmental fate of linear and cyclic volatile methylsiloxanes using multimedia fugacity models

    D. Panagopoulos and M. MacLeod, Environ. Sci.: Processes Impacts, 2018, 20, 183
    DOI: 10.1039/C7EM00524E

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements