Issue 4, 2017

A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells

Abstract

The sluggish oxygen reduction reaction (ORR) greatly reduces the energy efficiency of solid oxide fuel cells (SOFCs). Here we report our findings in dramatically enhancing the ORR kinetics and durability of the state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode using a hybrid catalyst coating composed of a conformal PrNi0.5Mn0.5O3 (PNM) thin film with exsoluted PrOx nanoparticles. At 750 °C, the hybrid catalyst-coated LSCF cathode shows a polarization resistance of ∼0.022 Ω cm2, about 1/6 of that for a bare LSCF cathode (∼0.134 Ω cm2). Further, anode-supported cells with the hybrid catalyst-coated LSCF cathode demonstrate remarkable peak power densities (∼1.21 W cm−2) while maintaining excellent durability (0.7 V for ∼500 h). Near Ambient X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) analyses, together with density functional theory (DFT) calculations, indicate that the oxygen-vacancy-rich surfaces of the PrOx nanoparticles greatly accelerate the rate of electron transfer in the ORR whereas the thin PNM film facilitates rapid oxide-ion transport while drastically enhancing the surface stability of the LSCF electrode.

Graphical abstract: A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2016
Accepted
13 Mar 2017
First published
14 Mar 2017

Energy Environ. Sci., 2017,10, 964-971

A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells

Y. Chen, Y. Chen, D. Ding, Y. Ding, Y. Choi, L. Zhang, S. Yoo, D. Chen, B. deGlee, H. Xu, Q. Lu, B. Zhao, G. Vardar, J. Wang, H. Bluhm, E. J. Crumlin, C. Yang, J. Liu, B. Yildiz and M. Liu, Energy Environ. Sci., 2017, 10, 964 DOI: 10.1039/C6EE03656B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements