Jump to main content
Jump to site search


Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties

Author affiliations

Abstract

Metal–organic frameworks of general composition [M6(OH)4(O)4(PDC)6−x(Cl)2x(H2O)2x] with M = Zr, Ce, Hf; PDC2− = 2,5-pyridinedicarboxylate and 0 ≤ x ≤ 2 were obtained under reflux using formic, nitric or acetic acid as an additive. Rietveld refinements carried out using a fixed occupancy of the linker molecules according to the results of thermogravimetric measurements confirmed that the MOFs crystallize in the UiO-66 type structure and demonstrate that the structural models describe the data well. Further characterization was carried out by NMR spectroscopy, thermogravimetric analysis, Zr K-edge EXAFS- and Ce L3-edge XANES measurements. To highlight the influence of the additional nitrogen atom of the pyridine ring, luminescence and vapour sorption measurements were carried out. The hydrophilisation of the MOFs was shown by the adsorption of water at lower p/p0 (<0.2) values compared to the corresponding BDC-MOFs (0.3). For water and methanol stability cycling adsorption experiments were carried out to evaluate the MOFs as potential adsorbents in heat transformation applications.

Graphical abstract: Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Sep 2017, accepted on 28 Nov 2017 and first published on 28 Nov 2017


Article type: Paper
DOI: 10.1039/C7DT03641H
Citation: Dalton Trans., 2018, Advance Article
  •   Request permissions

    Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties

    S. Waitschat, D. Fröhlich, H. Reinsch, H. Terraschke, K. A. Lomachenko, C. Lamberti, H. Kummer, T. Helling, M. Baumgartner, S. Henninger and N. Stock, Dalton Trans., 2018, Advance Article , DOI: 10.1039/C7DT03641H

Search articles by author

Spotlight

Advertisements