Issue 28, 2017

On the structures of the rare-earth metal germanides from the series REAl1−xGe3 (RE = Nd, Sm, Gd, Tb, Dy, Ho; 0.6 < x < 0.9). A tale of vacancies at the Al sites and the concomitant structural modulations

Abstract

A series of ternary rare-earth metal aluminum germanides with the general formula REAl1−xGe3 (RE = Nd, Sm, Gd, Tb, Dy, and Ho; 0.6 < x < 0.9) have been synthesized by direct fusion of the corresponding elements. Their structures have been characterized by single-crystal X-ray diffraction and selected area electron diffraction methods. The average structure for all members is a representative of the orthorhombic SmNiGe3-type structure (Pearson symbol oS20, space group Cmmm), where the Al atoms occupy the Ni site, and the deep off-stoichiometry is due to statistical vacancies at this position. Considering long-range ordering of the vacancies, a monoclinic and a different orthorhombic structure, which represent idealized ordered variants, are possible, and the structural evolution depending on the nature of the rare-earth metals and the amount of vacancies at the aluminum site are discussed. Commensurate and incommensurate structural modulations based on these parent structures are also observed by electron diffraction, attesting to the great structural complexity in these systems. Magnetic susceptibility measurements are presented and discussed, along with the results from electronic band-structure calculations.

Graphical abstract: On the structures of the rare-earth metal germanides from the series REAl1−xGe3 (RE = Nd, Sm, Gd, Tb, Dy, Ho; 0.6 < x < 0.9). A tale of vacancies at the Al sites and the concomitant structural modulations

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2017
Accepted
14 Jun 2017
First published
06 Jul 2017

Dalton Trans., 2017,46, 9253-9265

On the structures of the rare-earth metal germanides from the series REAl1−xGe3 (RE = Nd, Sm, Gd, Tb, Dy, Ho; 0.6 < x < 0.9). A tale of vacancies at the Al sites and the concomitant structural modulations

J. Zhang, Y. Liu, C. H. Shek, Y. Wang and S. Bobev, Dalton Trans., 2017, 46, 9253 DOI: 10.1039/C7DT01977G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements