Jump to main content
Jump to site search


Well-defined Functional Mesoporous Silica/Polymer Hybrids Prepared by ICAR ATRP Technique Integrated with Bio-inspired Polydopamine Chemistry for Lithium Isotopes Separation

Abstract

Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using ICAR ATRP technique. Evolution of the mesoporous silica/polymer hybrids during the synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by covalent attachment of macrocyclic ligands for adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotopes separation was evaluated. Higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 27 Feb 2017, accepted on 11 Apr 2017 and first published on 12 Apr 2017


Article type: Paper
DOI: 10.1039/C7DT00714K
Citation: Dalton Trans., 2017, Accepted Manuscript
  •   Request permissions

    Well-defined Functional Mesoporous Silica/Polymer Hybrids Prepared by ICAR ATRP Technique Integrated with Bio-inspired Polydopamine Chemistry for Lithium Isotopes Separation

    Y. Liu, X. Liu, G. Ye, Y. Song, F. Liu, X. Huo and J. CHEN, Dalton Trans., 2017, Accepted Manuscript , DOI: 10.1039/C7DT00714K

Search articles by author