Jump to main content
Jump to site search

Issue 27, 2017
Previous Article Next Article

Flexible organofunctional aerogels

Author affiliations

Abstract

Flexible inorganic–organic silica aerogels based on methyltrimethoxysilane (MTMS, CH3Si(OCH3)3) can overcome the drawbacks of conventional silica aerogels by introducing high mechanical strength, elastic recovery and hydrophobicity to monolithic materials. In this work, MTMS is co-condensed with organofunctional alkoxysilanes RSi(OMe)3 (R = vinyl, chloropropyl, mercaptopropyl, methacryloxypropyl, etc.) yielding aerogels that are not only flexible but also contain reactive functional groups. Sol–gel parameters, such as the MTMS/RSi(OMe)3 ratio, have been systematically investigated in terms of gelation behavior, complete/incomplete incorporation of the functional organic groups (confirmed by FTIR-ATR and Raman spectroscopy) and flexibility of the resulting gel. Sterically more demanding functional moieties lead to macroscopic phase separation; however, this problem was overcome by the employment of surfactants. Functional aerogels dried by supercritical extraction with carbon dioxide showed promising results in uniaxial compression tests and had an elastic recovery up to 60%. Furthermore, the accessibility of the functional groups was demonstrated by simple reactions, e.g. conversion of the chloro into azido groups via a nucleophilic substitution reaction with NaN3 followed by click reactions.

Graphical abstract: Flexible organofunctional aerogels

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Feb 2017, accepted on 16 Mar 2017 and first published on 16 Mar 2017


Article type: Paper
DOI: 10.1039/C7DT00558J
Citation: Dalton Trans., 2017,46, 8809-8817
  • Open access: Creative Commons BY license
  •   Request permissions

    Flexible organofunctional aerogels

    C. R. Ehgartner, S. Grandl, A. Feinle and N. Hüsing, Dalton Trans., 2017, 46, 8809
    DOI: 10.1039/C7DT00558J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements