Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.



A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes

Author affiliations

Abstract

A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo2O4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo2O4) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g−1 at a scan rate of 5 mV s−1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe3O4 nanoparticles and SiCF (SiCF/Fe3O4) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g−1 at a scan rate of 5 mV s−1. Therefore, by pairing the SiCF/MgCo2O4 positive electrode and the SiCF/Fe3O4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g−1 at a scan rate of 5 mV s−1) and energy density (maximum energy density of 72.79 Wh kg−1 at a power density of 727.96 W kg−1).

Graphical abstract: A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 06 Jan 2017, accepted on 24 Mar 2017 and first published on 28 Mar 2017


Article type: Paper
DOI: 10.1039/C7DT00056A
Citation: Dalton Trans., 2017, Advance Article
  •   Request permissions

    A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes

    M. Kim, J. Yoo and J. Kim, Dalton Trans., 2017, Advance Article , DOI: 10.1039/C7DT00056A

Search articles by author