Issue 11, 2017

Synthesis of new photosensitive H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] complexes, through selective oxidation of H2O to H2O2

Abstract

A new two-electron photosensitizer, H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] (BBQ stands for 2,5-bis[bis(pyridin-2-ylmethyl)amino]-1,4-quinone and BBH stands for 2,5-bis[bis(pyridin-2-ylmethyl)amino]-1,4-hydroquinone), has been synthesized and the oxidation state of the ligand was determined by X-ray crystallography and NMR spectroscopy. Under light illumination the H2BBQ2+[ZnCl4]2− + ZnCl2 is reduced quantitatively to [(ZnCl)2(μ-BBH)] (pH ∼ 5) oxidizing H2O to H2O2 as is evident by trap experiments. Electrochemistry gave a reversible two-electron ligand-centered redox wave for [(ZnCl)2(μ-BBH)]. UV-Vis, luminescence and EPR spectroscopies reveal the slow formation of a stable quinone diradical, intermediate of the reaction. DFT calculations are in agreement with the proposed mechanism. Based on this property an aqueous {[(ZnCl)2(μ-BBH)]||H2O2} solar rechargeable galvanic cell has been constructed.

Graphical abstract: Synthesis of new photosensitive H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] complexes, through selective oxidation of H2O to H2O2

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2016
Accepted
21 Feb 2017
First published
21 Feb 2017

Dalton Trans., 2017,46, 3688-3699

Synthesis of new photosensitive H2BBQ2+[ZnCl4]2−/[(ZnCl)2(μ-BBH)] complexes, through selective oxidation of H2O to H2O2

M. Stylianou, I. Hadjiadamou, C. Drouza, S. C. Hayes, E. Lariou, I. Tantis, P. Lianos, A. C. Tsipis and A. D. Keramidas, Dalton Trans., 2017, 46, 3688 DOI: 10.1039/C6DT04643F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements