Issue 24, 2017

Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites

Abstract

Alkali and alkaline-earth metal cation co-modified NaY zeolites were systematically synthesized and comprehensively investigated as catalysts for gas-phase dehydration of lactic acid (LA) to acrylic acid (AA). The long-term (time-on-stream >55 h) catalytic performance in four repeated reaction–regeneration cycles was studied. The best performing catalyst shows a consistently high AA selectivity of ∼84% at different weight hourly space velocity (WHSV) values ranging from 0.48 to 4.8 h−1. Most importantly, the catalyst can still deliver a high AA selectivity of ∼82% after four long-term reaction–regeneration cycles. The investigation shows that mild etching increases the defect density of the zeolite and thus leads to poor hydrothermal stability in the long-term reaction–regeneration cycles. The strong acidic adsorbate/catalyst surface interaction (base property) and the acidity of the catalyst are responsible for the catalyst deactivation. The role of the alkali and alkaline-earth metal cations and the transformation of these cations during the reaction and regeneration process are presented.

Graphical abstract: Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2017
Accepted
07 Nov 2017
First published
08 Nov 2017

Catal. Sci. Technol., 2017,7, 6101-6111

Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites

L. Zhang, D. S. Theng, Y. Du, S. Xi, L. Huang, F. Gao, C. Wang, L. Chen and A. Borgna, Catal. Sci. Technol., 2017, 7, 6101 DOI: 10.1039/C7CY02142A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements