Jump to main content
Jump to site search


New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds

Author affiliations

Abstract

Methanol (MeOH) and dimethyl ether (DME) have been compared as feedstock for the methanol-to-hydrocarbons (MTH) reaction over H-ZSM-5 (MFI), H-SSZ-24 (AFI) and H-SAPO-5 (AFI) catalysts at 350 and 450 °C. Several clear observations were made. First, the MeOH–DME equilibrium is not always established in the MTH reaction, because the rate of MeOH dehydration to DME is similar to the rates of the methylation reactions over strong Brønsted acid sites. In the presence of weak acid sites (i.e. the AlPO framework of SAPO-5), which are nearly inactive to hydrocarbons formation, the MeOH–DME equilibrium can be reached. Second, the MTH activity is ostensibly higher for DME compared to MeOH. Third, the carbon conversion capacity of the catalysts is generally higher (up to 16 times higher under the conditions used in this work) with a DME feed compared to a MeOH feed. Incorporation of AlPO-5 as dehydration catalyst before or mixed with a H-SSZ-24 catalyst for MTH, leads to lower MeOH concentrations in the reaction mixture, and a significant increase of the conversion capacity. Finally, a MeOH feed results in a higher selectivity for aromatic products and ethylene, pointing to a larger contribution of the arene cycle, compared to a DME feed. We hypothesize, that MeOH causes formation of formaldehyde, while DME does not. Formaldehyde is a known coke precursor, which provides an explanation for the faster deactivation of zeolites in a MeOH feed.

Graphical abstract: New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 20 Jan 2017, accepted on 12 Apr 2017 and first published on 13 Apr 2017


Article type: Paper
DOI: 10.1039/C7CY00129K
Citation: Catal. Sci. Technol., 2017, Advance Article
  •   Request permissions

    New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds

    J. S. Martinez-Espin, M. Mortén, T. V. W. Janssens, S. Svelle, P. Beato and U. Olsbye, Catal. Sci. Technol., 2017, Advance Article , DOI: 10.1039/C7CY00129K

Search articles by author