Jump to main content
Jump to site search

Issue 10, 2017
Previous Article Next Article

High-voltage positive electrode materials for lithium-ion batteries

Author affiliations

Abstract

The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. This review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirements either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. A concise perspective with respect to plausible strategies for future developments in the field is also provided.

Graphical abstract: High-voltage positive electrode materials for lithium-ion batteries

Back to tab navigation

Publication details

The article was received on 02 Dec 2016 and first published on 25 Apr 2017


Article type: Review Article
DOI: 10.1039/C6CS00875E
Citation: Chem. Soc. Rev., 2017,46, 3006-3059
  •   Request permissions

    High-voltage positive electrode materials for lithium-ion batteries

    W. Li, B. Song and A. Manthiram, Chem. Soc. Rev., 2017, 46, 3006
    DOI: 10.1039/C6CS00875E

Search articles by author

Spotlight

Advertisements