Jump to main content
Jump to site search

Issue 48, 2017
Previous Article Next Article

Escape of anions from geminate recombination in THF due to charge delocalization

Author affiliations

Abstract

Geminate recombination of 24 radical anions (M˙) with solvated protons (RH2+) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ and RH2+ together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH2+ to M˙. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion of TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J−1) comprising ∼29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Three anions of oligo(9,9-dihexyl)fluorenes, Fn˙ (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 106 s−1. These experiments find no evidence for an inverted region for proton transfer.

Graphical abstract: Escape of anions from geminate recombination in THF due to charge delocalization

Back to tab navigation

Supplementary files

Publication details

The article was received on 28 Aug 2017, accepted on 23 Nov 2017 and first published on 24 Nov 2017


Article type: Paper
DOI: 10.1039/C7CP05880B
Citation: Phys. Chem. Chem. Phys., 2017,19, 32272-32285
  •   Request permissions

    Escape of anions from geminate recombination in THF due to charge delocalization

    H. Chen, A. R. Cook, S. Asaoka, J. S. Boschen, T. L. Windus and J. R. Miller, Phys. Chem. Chem. Phys., 2017, 19, 32272
    DOI: 10.1039/C7CP05880B

Search articles by author

Spotlight

Advertisements