Issue 1, 2018

Comment on “Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors” by A. Battisti, G. Ciasca, A. Grottesi and A. Tenenbaum, Phys. Chem. Chem. Phys., 2017, 19, 8435

Abstract

In a recent article, A. Battisti et al., Phys. Chem. Chem. Phys., 2017, 19, 8435, results from SAXS measurements, metadynamic trajectories and classic MD trajectories at different temperatures have been used to study the temperature-induced compaction of the intrinsically disordered protein tau. The analysis, though technically sound, does not provide a clear explanation of hydrophobic interaction strengthening on increasing the temperature and its relationship with the population increase of secondary structural elements. Actually, hydrophobic interaction is driven by the gain in translational entropy of water molecules associated with the decrease in solvent-excluded volume due to chain compaction. The magnitude of this solvent-excluded volume effect increases with temperature in water because the density of water is almost temperature-independent due to the strength of H-bonds. Since α-helix formation leads to a significant decrease in the solvent-excluded volume, the connection with hydrophobic interaction and chain compaction emerges directly.

Graphical abstract: Comment on “Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors” by A. Battisti, G. Ciasca, A. Grottesi and A. Tenenbaum, Phys. Chem. Chem. Phys., 2017, 19, 8435

Associated articles

Article information

Article type
Comment
Submitted
06 Jul 2017
Accepted
29 Nov 2017
First published
30 Nov 2017

Phys. Chem. Chem. Phys., 2018,20, 690-693

Comment on “Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors” by A. Battisti, G. Ciasca, A. Grottesi and A. Tenenbaum, Phys. Chem. Chem. Phys., 2017, 19, 8435

G. Graziano, Phys. Chem. Chem. Phys., 2018, 20, 690 DOI: 10.1039/C7CP04546H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements