Jump to main content
Jump to site search


Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ)

Author affiliations

Abstract

Theoretical understanding of charge transport in organic semiconductors is exclusively important for organic electronics, but still remains a subject of debate. The recently discovered record-high band-like electron mobility in single crystals of 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ) is challenging from the theoretical viewpoint. First, the very small size of the F2-TCNQ molecule implies high reorganization energy that seems incompatible with efficient charge transport. Second, it is not clear why the crystals of a similar compound, 7,7,8,8-tetracyanoquinodimethane (TCNQ), show an inefficient hopping electron transport mechanism. To address these issues, we apply DFT and QM/MM calculations to the Fn-TCNQ (n = 0,2,4) crystal series. We show that multidimensional intermolecular charge delocalization is of key importance for efficient charge transport in materials consisting of small-sized molecules, and commonly used guidelines for the search for high-mobility organic semiconductors are to be corrected.

Graphical abstract: Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ)

Back to tab navigation

Supplementary files

Publication details

The article was received on 28 Jun 2017, accepted on 24 Aug 2017 and first published on 24 Aug 2017


Article type: Paper
DOI: 10.1039/C7CP04357K
Citation: Phys. Chem. Chem. Phys., 2017, Advance Article
  •   Request permissions

    Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ)

    A. Yu. Sosorev, Phys. Chem. Chem. Phys., 2017, Advance Article , DOI: 10.1039/C7CP04357K

Search articles by author

Spotlight

Advertisements