Issue 40, 2017

Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

Abstract

It is well-known that the nature and size of the counterions affect the ionic conductivity and glass transition temperature of ionic polymers in a significant manner. However, the microscopic origin of the underlying changes in the dynamics of chains and counterions is far from completely understood. Using coarse-grained molecular dynamics simulations of flexible and semi-flexible ionic polymers, we demonstrate that the glass transition temperature of ionic polymeric melts depends on the size of monovalent counterions in a non-monotonic manner. The glass transition temperature is found to be the highest for the smallest counterions and decreases with an increase in the counterion radii up to a point, after which the glass transition temperature increases with a further increase in the radii. This behavior is because the counterions have significant effects on the coupled dynamics of the charges on the chains and counterions. In particular, increase in the radii of the counterions leads to strongly coupled dynamics between the charges on the chains and the counterions. The static dielectric constant of the polymer melts also has a significant effect on the coupling and the glass transition temperature. The glass transition temperature is predicted to decrease with an increase in the dielectric constant. This, in turn, leads to an increase in the diffusion constant of the counterions at a given temperature. Backbone rigidity is shown to increase the glass transition temperature and decrease the coupling. Furthermore, faster counterion dynamics is predicted for the melts of semi-flexible chains in comparison with flexible chains at the same segmental relaxation time. As the semi-flexible chains tend to have a longer segmental relaxation time, semi-flexible polymers with high dielectric constants are predicted to have diffusion constants of counterions comparable with flexible polymers.

Graphical abstract: Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2017
Accepted
12 Sep 2017
First published
12 Sep 2017

Phys. Chem. Chem. Phys., 2017,19, 27442-27451

Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

Y. Fu, V. Bocharova, M. Ma, A. P. Sokolov, B. G. Sumpter and R. Kumar, Phys. Chem. Chem. Phys., 2017, 19, 27442 DOI: 10.1039/C7CP04249C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements