Jump to main content
Jump to site search

Issue 40, 2017
Previous Article Next Article

The adsorption of Cu on the CeO2(110) surface

Author affiliations

Abstract

We report a detailed density functional theory (DFT) study in conjunction with extended X-ray absorption fine structure (EXAFS) experiments on the geometrical and local electronic properties of Cu adatoms and Cu(II) ions in presence of water molecules and of CuO nanoclusters on the CeO2(110) surface. Our study of (CuO)n(=1,2&4) clusters on CeO2(110) shows that based on the Cu–O environment, the geometrical properties of these clusters may vary and their presence may lead to relatively high localization of charge on the exposed surfaces. We find that in the presence of an optimum concentration of water molecules, Cu has a square pyramidal geometry, which agrees well with our experimental findings; we also find that Cu(II) facilitates water adsorption on the CeO2(110) surface. We further show that a critical concentration of water molecules is required for the hydrolysis of water on Cu(OH)2/CeO2(110) and on pristine CeO2(110) surfaces.

Graphical abstract: The adsorption of Cu on the CeO2(110) surface

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Jun 2017, accepted on 23 Aug 2017 and first published on 23 Aug 2017


Article type: Paper
DOI: 10.1039/C7CP04144F
Citation: Phys. Chem. Chem. Phys., 2017,19, 27191-27203
  • Open access: Creative Commons BY license
  •   Request permissions

    The adsorption of Cu on the CeO2(110) surface

    A. Chutia, E. K. Gibson, M. R. Farrow, P. P. Wells, D. O. Scanlon, N. Dimitratos, D. J. Willock and C. R. A. Catlow, Phys. Chem. Chem. Phys., 2017, 19, 27191
    DOI: 10.1039/C7CP04144F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements