Issue 29, 2017

Characterization of the thermal/thermal oxidative stability of fluorinated graphene with various structures

Abstract

Considering practical applications, the thermal/thermal oxidative stability of fluorinated graphene should be given sufficient attention. Herein, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were used to investigate in detail the differences in the thermal stabilities of two types of fluorinated samples, fluorinated graphene (FG) and fluorinated porous graphene (FPG) with various fluorine contents, respectively, as well as the reasons for these differences. It was demonstrated that the thermal stability of FG and FPG was improved upon increasing the fluorine content, which was mainly caused by the enhancement of bond energy of the covalent C–F bonds. Moreover, compared to that of the raw graphene samples, the thermal oxidative stability of FG was reduced due to the defects brought by fluorination, while the thermal oxidative stability of FPG was improved, originating from the inflaming retarding effect of the fluorine element. Interestingly, the thermal oxidative stability of the fluorinated samples was even better than their thermal stability. Using a comparison of the two types of fluorinated samples and support from the computational simulations of the model molecules, it was suggested that a greater amount of CFn (n = 2, 3) groups or defects in the FG samples resulted in its relatively worse thermal stabilities. Furthermore, electron paramagnetic resonance (EPR) spectroscopy was introduced to analyze the thermal stabilities of the fluorinated graphene samples as a novel method. The changes in the spin centers in samples after thermal treatment were studied, which indicated that the lower amount of the more stable spin centers of FPG was another reason leading to its more outstanding thermal stabilities in comparison to FG samples.

Graphical abstract: Characterization of the thermal/thermal oxidative stability of fluorinated graphene with various structures

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2017
Accepted
30 Jun 2017
First published
30 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 19442-19451

Characterization of the thermal/thermal oxidative stability of fluorinated graphene with various structures

W. Lai, D. Xu, X. Wang, Z. Wang, Y. Liu, X. Zhang and X. Liu, Phys. Chem. Chem. Phys., 2017, 19, 19442 DOI: 10.1039/C7CP03684A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements