Jump to main content
Jump to site search


Influence of Permittivity and Energetic Disorder on the Spatial Charge Carrier Distribution and Recombination in Organic Bulk-Heterojunctions

Abstract

In bulk-heterojunction organic solar cells the low permittivity in combination with the spatial and energetic disorder of the organic materials lead to a complex behavior of charge carriers within the active layer. Charges originate from exciton splitting at the heterojunction interface and the successive interplay between mutual Coulomb interaction and transport through the disordered organic can lead to insufficient separation from the interface, increased interface densities with respect to the bulk regions and, hence, affect recombination. To further understand the mechanisms of recombination, insight into the explicit spatial distribution of charge carriers within the blend is crucial. We performed kinetic Monte Carlo simulations on a bulk-heterojunction organic solar cell to assess the effect of Coulomb interaction and energetic disorder on the three-dimensional spatial distribution of charge carriers and highlight the correlation to both geminate and non-geminate recombination. We show that for materials with low permittivity and large energetic disorder the charge distribution is strongly inhomogeneous with accumulation along the heterojunction interface. In such cases recombination is not limited by recombination partners finding each other but rather an interface controlled process where geminate recombination dominates over nongeminate recombination.

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 May 2017, accepted on 07 Jul 2017 and first published on 07 Jul 2017


Article type: Paper
DOI: 10.1039/C7CP03513F
Citation: Phys. Chem. Chem. Phys., 2017, Accepted Manuscript
  •   Request permissions

    Influence of Permittivity and Energetic Disorder on the Spatial Charge Carrier Distribution and Recombination in Organic Bulk-Heterojunctions

    T. Albes and A. Gagliardi, Phys. Chem. Chem. Phys., 2017, Accepted Manuscript , DOI: 10.1039/C7CP03513F

Search articles by author

Spotlight

Advertisements