Jump to main content
Jump to site search

Issue 28, 2017
Previous Article Next Article

Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations

Author affiliations

Abstract

The interaction of 14 different probe organic molecules with the crystalline (010) forsterite Mg2SiO4 surface has been studied at quantum chemical level by means of B3LYP-D2* periodic simulations. The probe molecules are representatives of the class of soluble organic compounds found in carbonaceous meteorites, namely: aliphatic and aromatic hydrocarbons, alcohols, carbonyl compounds, amines, amides, nitrogen heterocycles, carboxylic and hydroxycarboxylic acids, sulfonic and phosphonic acids, amino acids, and carbohydrates. With the exception of the aliphatic and aromatic hydrocarbons, the interaction takes place mainly between the O and N electron donor atoms of the molecules and the outermost Mg surface cations, and/or by hydrogen bonds of H atoms of the molecules with O surface atoms. Dispersion also contributes to the final interaction energies. Each surface/molecule complex has also been characterized by computing its harmonic vibrational spectrum, in which the most significant frequency perturbations caused by the surface interaction are described. With the calculated interaction energies, a trend of the intrinsic affinity of the probe molecules with the silicate surface has been obtained. However, this affinity scale does not correlate with the experimental abundances of the class of compounds found in the Murchison meteorite. A brief discussion of this lack of correlation and the factors that can help us to understand the abundances is provided.

Graphical abstract: Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 May 2017, accepted on 30 Jun 2017 and first published on 30 Jun 2017


Article type: Paper
DOI: 10.1039/C7CP03504G
Citation: Phys. Chem. Chem. Phys., 2017,19, 18217-18231
  •   Request permissions

    Interaction of organic compounds with chondritic silicate surfaces. Atomistic insights from quantum chemical periodic simulations

    A. Rimola, J. M. Trigo-Rodríguez and Z. Martins, Phys. Chem. Chem. Phys., 2017, 19, 18217
    DOI: 10.1039/C7CP03504G

Search articles by author

Spotlight

Advertisements