Issue 32, 2017

Efficient 3He/4He separation in a nanoporous graphenylene membrane

Abstract

Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3He demand and supply shortage leads to the search for an efficient membrane with high performance for 3He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3He/4He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3He/4He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3He harvesting that can be exploited for industrial applications.

Graphical abstract: Efficient 3He/4He separation in a nanoporous graphenylene membrane

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2017
Accepted
18 Jul 2017
First published
18 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 21522-21526

Efficient 3He/4He separation in a nanoporous graphenylene membrane

Y. Qu, F. Li and M. Zhao, Phys. Chem. Chem. Phys., 2017, 19, 21522 DOI: 10.1039/C7CP03422A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements