Issue 38, 2017

Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents

Abstract

The photoisomerization of the all-trans protonated Schiff base of retinal (SBR+) in solution is highly inefficient. The present theoretical and experimental investigation aims at disclosing the mechanisms of ultrafast, non-reactive relaxation of SBR+ that lead to the drastic decrease in the isomerization yield in non-polar solvents. Our pump–probe measurements demonstrate the sensitivity of the all-trans SBR+ excited-state dynamics on the electrostatic interaction with the surrounding counterions and the crucial importance of the chromophore microenvironment. Our computational study focuses for the first time on the retinal chromophore–counterion pairs that are formed in non-polar solvents. By employing TDDFT-based nonadiabatic dynamics simulations and ADC(2) reaction paths calculations we found that internal conversion from the initially excited state to an inter-molecular charge transfer state with excitation localized on the counterion, leads to dissociation of the chromophore–counterion pair and to the abortion of isomerization. Barriers to conical intersection with the inter-molecular charge transfer state were found in the range 0.42–0.67 eV at the ADC(2) level. The existence of a barrier along the non-reactive relaxation pathways explains the observation that in solution the excitation on the blue edge of the SBR+ absorption leads to decrease in the isomerization yield with respect to the excitation at the red edge.

Graphical abstract: Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2017
Accepted
14 Sep 2017
First published
14 Sep 2017

Phys. Chem. Chem. Phys., 2017,19, 25970-25978

Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents

M. Mališ, J. Novak, G. Zgrablić, F. Parmigiani and N. Došlić, Phys. Chem. Chem. Phys., 2017, 19, 25970 DOI: 10.1039/C7CP03293E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements