Jump to main content
Jump to site search

Issue 24, 2017
Previous Article Next Article

Influence of the alkyl side-chain length on the ultrafast vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (CnmimNTf2) ionic liquids

Author affiliations

Abstract

Probing the vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (CnmimNTf2) ionic liquids (ILs) using femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) has indicated the ultrafast vibrational energy transfer between counter ions which is governed by interionic interactions and facilitated by hydrogen bonds. In this study, fs-CARS is used to investigate the ultrafast dynamics of the vibrational modes of the CnmimNTf2 ILs with n = 6, 8, 10, and 12 in a spectral region, which involves the imidazolium ring and the alkyl side-chain vibrations. The vibrational Raman modes with wavenumbers around 1418 cm−1 are excited through the CARS process and the ultrafast time evolution of the consequently excited vibrational modes is monitored. The investigation of the life times of the fs-CARS transient signals indicates that the time scale of the dynamics becomes much faster when the alkyl side-chain length of the CnmimNTf2 is longer than n = 8. This observation suggests an increase in the hydrogen bonding interactions due to the nano-structuring of the ionic liquids, which became evident with an increasing length of the alkyl side-chain. This behavior is also found in molecular dynamics simulations. There, an increase of the oxygen density around the C(2)–H moiety of the imidazolium ring, which is the predominant site for hydrogen bond formation, is observed. In other words, the longer the alkyl side-chain, the more reorganization of the ionic liquid into polar and non-polar domains occurs and the higher the probability of finding interionic hydrogen bonds at the C(2)–H position becomes.

Graphical abstract: Influence of the alkyl side-chain length on the ultrafast vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (CnmimNTf2) ionic liquids

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Apr 2017, accepted on 31 May 2017 and first published on 31 May 2017


Article type: Paper
DOI: 10.1039/C7CP02686B
Citation: Phys. Chem. Chem. Phys., 2017,19, 15988-15995
  •   Request permissions

    Influence of the alkyl side-chain length on the ultrafast vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (CnmimNTf2) ionic liquids

    M. Mohammad Kazemi, M. Namboodiri, P. Donfack, A. Materny, D. Kerlé, B. Rathke and J. Kiefer, Phys. Chem. Chem. Phys., 2017, 19, 15988
    DOI: 10.1039/C7CP02686B

Search articles by author

Spotlight

Advertisements