Jump to main content
Jump to site search

Issue 28, 2017
Previous Article Next Article

Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

Author affiliations

Abstract

Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the response of this protein complex to ionizing radiation has never been studied. In this work, we probe the direct effects of VUV and soft X-ray photons on isolated models of the collagen triple helix, by coupling a tandem mass spectrometer to a synchrotron beamline. Single-photon absorption is found to induce electronic excitation, ionization and conversion into internal energy leading to inter- and intra-molecular fragmentation, mainly due to Gly-Pro peptide bond cleavages. Our results indicate that increasing the photon energy from 14 to 22 eV reduces fragmentation. We explain this surprising behavior by a smooth transition from excitation to ionization occurring with increasing photon energy. Moreover, our data support the assumption of a stabilization of the triple helix models by proline hydroxylation via intra-complex stereoelectronic effects, instead of the influence of solvent.

Graphical abstract: Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Apr 2017, accepted on 23 Jun 2017 and first published on 23 Jun 2017


Article type: Paper
DOI: 10.1039/C7CP02527K
Citation: Phys. Chem. Chem. Phys., 2017,19, 18321-18329
  •   Request permissions

    Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

    L. Schwob, M. Lalande, J. Rangama, D. Egorov, R. Hoekstra, R. Pandey, S. Eden, T. Schlathölter, V. Vizcaino and J. Poully, Phys. Chem. Chem. Phys., 2017, 19, 18321
    DOI: 10.1039/C7CP02527K

Search articles by author

Spotlight

Advertisements