Issue 24, 2017

A novel self-activation mechanism of Candida antarctica lipase B

Abstract

Candida antarctica lipase B (CalB), resembling many other lipases structure-wise, contains a flexible lid that undergoes a surprisingly large conformational change when catalyzing hydrophobic substrates (e.g. triglycerides). Despite extensive and important applications in industry, it is so far still elusive whether CalB can be activated on a hydrophobic surface, like other lipases. From large-scale all-atom molecular dynamics simulations, we discovered an open state that strikingly shows a much wider and more stable entrance to the catalytic site than the one suggested by previous crystal structures. Simulations demonstrate that in the newly found open state CalB possesses a “lid-holder” structure that intimately harbors the lid of CalB, i.e. a remarkable self-activation mechanism. To account for the unusual interfacial activation of CALB revealed in a recent experiment, we further introduce a simple model: the activation occurs only when the binding free energy between the lid and a hydrophobic surface is larger than a critical value, 4.0 kcal mol−1 that is the one between the lid and the “lid-holder”. Our findings shed light on possible protein engineering of lipases to permit either self-activation with broadened catalytic targets (including water soluble ones) or surface activation with elevated activities.

Graphical abstract: A novel self-activation mechanism of Candida antarctica lipase B

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2017
Accepted
18 May 2017
First published
19 May 2017

Phys. Chem. Chem. Phys., 2017,19, 15709-15714

A novel self-activation mechanism of Candida antarctica lipase B

B. Luan and R. Zhou, Phys. Chem. Chem. Phys., 2017, 19, 15709 DOI: 10.1039/C7CP02198D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements