Jump to main content
Jump to site search

Issue 21, 2017
Previous Article Next Article

Reduced {001}-TiO2−x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution

Author affiliations

Abstract

The preparation of reduced TiO2 photocatalysts with high Ti3+ concentration is a great challenge due to their instability in air. Here we report a new approach for the synthesis of reduced TiO2 with {001} facets exposed via a hydrothermal process. By the introduction of fluoride atoms, {001} and {101} facets are formed, which act as hole and electron collectors, respectively, for charge separation. By adjusting the volume of HF added, a rutile–anatase transition is observed for the first time. EPR spectra confirm the generation of Ti3+ species in the bulk of TiO2, and Ti3+ signals are studied in the anatase and rutile phases separately. The quantified EPR shows that reduced TiO2 samples present 14 000-fold more spins compared to the pristine TiO2, and the intensity can reach as high as 24.6 × 1019 spins per g. The obtained samples also have a unique disordered layer with a thickness of 1–2 nm on their surfaces, which contributes to the stabilization of the formed Ti3+ species by preventing their oxidation in air. In addition, the synthesized reduced TiO2 samples also exhibit wide-spectrum solar light absorption, especially in the near-infrared region. Owing to their enhanced solar light absorption, improved electron–hole separation and special facet exposure, these samples exhibit enhanced photocatalytic CO2 reduction performance and high CH4 selectivity under solar light irradiation, in the absence of a noble metal Pt as a co-catalyst.

Graphical abstract: Reduced {001}-TiO2−x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Feb 2017, accepted on 30 Apr 2017 and first published on 03 May 2017


Article type: Paper
DOI: 10.1039/C7CP01212H
Citation: Phys. Chem. Chem. Phys., 2017,19, 13875-13881
  •   Request permissions

    Reduced {001}-TiO2−x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution

    W. Fang, L. Khrouz, Y. Zhou, B. Shen, C. Dong, M. Xing, S. Mishra, S. Daniele and J. Zhang, Phys. Chem. Chem. Phys., 2017, 19, 13875
    DOI: 10.1039/C7CP01212H

Search articles by author

Spotlight

Advertisements