Jump to main content
Jump to site search


Structure of Liquid Water - A Dynamical Mixture of Tetrahedral and ‘Ring-and-Chain’ like Structures

Abstract

The nature of the dynamical hydrogen-bond network of liquid water at ambient condition has challenged both experimental and theoretical researchers for decades and remains a topic of intense debate. In this work, we addressed the structural issue of hydrogen-bond network of liquid water based on an accurate ab initio molecular dynamics simulation. The present work showed clearly that the liquid water is neither accurately described by a static picture of mostly tetrahedral water molecules nor dominated by “ring-and-chain” like structures. Instead, the structure of water is a dynamical mixture of tetrahedral and ‘ring-and-chain’ like structures with a slight bias toward the former. On average, each water molecule forms about three hydrogen bonds with the surrounding water molecules. The present accurate ab initio molecular dynamics simulation of liquid water was made possible by using a fragment-based second-order Møller-Plesset perturbation theory (MP2) with large basis set to treat a large body of water molecules. This level of ab initio theory is sufficiently accurate for describing water interactions and the simulated structural and dynamical properties of liquid water, including radial distribution functions, diffusion coefficient, dipole moment, etc., are uniformly in excellent agreement with experimental observations.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 30 Jan 2017, accepted on 06 Apr 2017 and first published on 12 Apr 2017


Article type: Paper
DOI: 10.1039/C7CP00667E
Citation: Phys. Chem. Chem. Phys., 2017, Accepted Manuscript
  •   Request permissions

    Structure of Liquid Water - A Dynamical Mixture of Tetrahedral and ‘Ring-and-Chain’ like Structures

    J. Liu, X. He and J. Z.H. Zhang, Phys. Chem. Chem. Phys., 2017, Accepted Manuscript , DOI: 10.1039/C7CP00667E

Search articles by author