Jump to main content
Jump to site search


Effect of microsolvation on a SN2 reaction. Indirect atomistic dynamics and weakened suppression of reactivity

Abstract

The systematic studies of microsolvation in the gas phase have enriched our knowledge of solvent effects. Here, the dynamics of a prototype SN2 reaction of hydrated fluoride ion with methyl iodide is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for unsolvated system. An indirect scattering is found to prevail, which occurs dominantly by forming hydrated F-(H2O)-HCH2I and F-(H2O)-CH3I pre-reaction complexes at low energies, but proceeds through the water-free counterparts at higher energies. This finding is in strong contrast to a general evolution from indirect to direct dynamics with enhancing energy for the unsolvated substitution reactions, and this discrepancy is understood by the substantial steric hindrance introduced by water molecule. As established in experiments, solvation suppresses the reactivity, whereas we find this depression is remarkably frustrated upon raising energy given that collision-induced dehydration essentially diminishes the water block for reactive collisions. The present study sheds light on how solute-solvent interactions affect the underlying dynamics at a deeper atomic-level, thereby promoting our understanding of the fundamental solvent effects on chemical reactions in solution.

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 14 Jan 2017, accepted on 14 Mar 2017, published on 15 Mar 2017 and first published online on 15 Mar 2017


Article type: Paper
DOI: 10.1039/C7CP00294G
Citation: Phys. Chem. Chem. Phys., 2017, Accepted Manuscript
  •   Request permissions

    Effect of microsolvation on a SN2 reaction. Indirect atomistic dynamics and weakened suppression of reactivity

    L. Yang, X. Liu, J. Zhang and J. Xie, Phys. Chem. Chem. Phys., 2017, Accepted Manuscript , DOI: 10.1039/C7CP00294G

Search articles by author