Jump to main content
Jump to site search

Issue 4, 2017
Previous Article Next Article

Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells

Author affiliations

Abstract

The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e water formation is: first, *OOH formation; second, *OOH reduction to H2O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley–Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.

Graphical abstract: Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Nov 2016, accepted on 20 Dec 2016 and first published on 21 Dec 2016


Article type: Communication
DOI: 10.1039/C6CP08055C
Citation: Phys. Chem. Chem. Phys., 2017,19, 2666-2673
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells

    T. Cheng, W. A. Goddard, Q. An, H. Xiao, B. Merinov and S. Morozov, Phys. Chem. Chem. Phys., 2017, 19, 2666
    DOI: 10.1039/C6CP08055C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements