Issue 4, 2017

Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water

Abstract

The intramolecular dehydration of biomass-derived sugar alcohols D-sorbitol, D-mannitol, galactitol, xylitol, ribitol, L-arabitol, erythritol, L-threitol, and DL-threitol was investigated in high-temperature water at 523–573 K without the addition of any acid catalysts. D-Sorbitol and D-mannitol were dehydrated into isosorbide and isomannide, respectively, as dianhydrohexitol products. Galactitol was dehydrated into anhydrogalactitols; however, the anhydrogalactitols could not be dehydrated into dianhydrogalactitol products because of the orientation of the hydroxyl groups at the C-3 and C-6 positions. Pentitols such as xylitol, ribitol, and L-arabitol were dehydrated into anhydropentitols. The dehydration rates of the pentitols containing hydroxyl groups in the trans form, which remained as hydroxyl groups in the product tetrahydrofuran, were larger than those containing hydroxyl groups in the cis form because of the structural hindrance caused by the hydroxyl groups in the cis form during the dehydration process. In the case of the tetritols, the dehydration of erythritol was slower than that of threitol, which could also be explained by the structural hindrance of the hydroxyl groups. The dehydration of L-threitol was faster than that of DL-threitol, which implies that molecular clusters were formed by hydrogen bonding between the sugar alcohols in water, which could be an important factor that affects the dehydration process.

Graphical abstract: Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2016
Accepted
08 Nov 2016
First published
29 Nov 2016
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2017,19, 2714-2722

Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water

A. Yamaguchi, N. Muramatsu, N. Mimura, M. Shirai and O. Sato, Phys. Chem. Chem. Phys., 2017, 19, 2714 DOI: 10.1039/C6CP06831F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements