Jump to main content
Jump to site search

Issue 34, 2017
Previous Article Next Article

Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

Author affiliations

Abstract

We describe a novel synthetic route of highly single crystalline sodium vanadate (β-Na0.33V2O5) and vanadium pentoxide (α-V2O5) nanowires via a simple thermal annealing process followed by the formation of amorphous nanoparticles of V(OH)3 and Na-containing V(OH)3 precursors prepared by controlling the pH of precursor solutions. The distinct crystal growth process suggests that the intercalation of Na ions is governed by the pH of the aqueous solution. In addition, the binding nature to the amorphous V(OH)3 nanoparticle precursors could be a key factor in determining the unidirectional growth of highly single crystalline β-Na0.33V2O5 and α-V2O5 nanowires. The obtained single crystalline β-Na0.33V2O5 nanowire shows promising electrode performance for sodium-ion batteries (SIB) with greater discharge capacity and better rate characteristics compared with those of the α-V2O5 nanowire. The superior electrode functionality of β-Na0.33V2O5 over α-V2O5 is attributable to its better charge transfer kinetics and its higher structural and morphological stability.

Graphical abstract: Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Apr 2017, accepted on 18 Jul 2017 and first published on 19 Jul 2017


Article type: Paper
DOI: 10.1039/C7CE00781G
Citation: CrystEngComm, 2017,19, 5028-5037
  •   Request permissions

    Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

    Y. Lee, S. M. Oh, B. Park, B. U. Ye, N. Lee, J. M. Baik, S. Hwang and M. H. Kim, CrystEngComm, 2017, 19, 5028
    DOI: 10.1039/C7CE00781G

Search articles by author

Spotlight

Advertisements