Jump to main content
Jump to site search


Overall water splitting by photoelectrochemical cells consisting of (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes and BiVO4 photoanodes

Author affiliations

Abstract

The design of photoelectrochemical (PEC) cell structures that mitigate challenges related to mass transfer is the key to achieving efficient hydrogen production. A PEC cell based on an integrated photoelectrode incorporating (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 strips and BiVO4 strips exhibited 1.0% solar-to-hydrogen energy conversion efficiency even without stirring the electrolyte solution.

Graphical abstract: Overall water splitting by photoelectrochemical cells consisting of (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes and BiVO4 photoanodes

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Aug 2017, accepted on 04 Oct 2017 and first published on 04 Oct 2017


Article type: Communication
DOI: 10.1039/C7CC06637F
Citation: Chem. Commun., 2017, Advance Article
  •   Request permissions

    Overall water splitting by photoelectrochemical cells consisting of (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes and BiVO4 photoanodes

    T. Higashi, H. Kaneko, T. Minegishi, H. Kobayashi, M. Zhong, Y. Kuang, T. Hisatomi, M. Katayama, T. Takata, H. Nishiyama, T. Yamada and K. Domen, Chem. Commun., 2017, Advance Article , DOI: 10.1039/C7CC06637F

Search articles by author

Spotlight

Advertisements