Issue 10, 2017

Quantitative NMR of quadrupolar nucleus as a novel analytical method: hydrolysis behaviour analysis of aluminum ion

Abstract

In this study, quantitative nuclear magnetic resonance (qNMR) spectroscopy of quadrupolar nuclei has been established. The complicated hydrolysis behavior of the Al3+ ion, which causes fish poisoning and inhibits the growth of plants in environmental water, was clarified by 27Al qNMR spectroscopy. Highly accurate simultaneous multicomponent quantitative analysis of various hydrolyzed forms of the Al ion was achieved in a non-destructive manner. The calibration curve of the external standard aqueous Al(NO3)3 solution showed excellent linearity over a very wide concentration range from 1 × 10−4 to 1 mol L−1 (an increase in concentration of 10 000 times), with a simple experimental and analytical procedure. Furthermore, the weaknesses of the conventional Ferron assay and the advantages of 27Al qNMR spectroscopy were considered. The quantitative determination error for the free [Al(H2O)6]3+ ion and the trinuclear complex, which has a high complexation rate, is higher in the Ferron assay than in the 27Al qNMR technique. The concentrations of four Al species were directly determined by 27Al qNMR, namely, free [Al(H2O)6]3+, the trinuclear complex, Al(OH)4, and tridecameric hydrolyzed Al, which has a Keggin structure. The concentration of the tridecamer rapidly increased until 100 min after NaOH addition, and showed a local maximum after 1 week. In addition, the concentration of colloidal Al hydroxide, which cannot be detected by NMR spectroscopy, was determined by numerical analysis. This species was generated in the initial stage of reaction, and then the tridecamer formed very slowly.

Graphical abstract: Quantitative NMR of quadrupolar nucleus as a novel analytical method: hydrolysis behaviour analysis of aluminum ion

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2017
Accepted
17 Apr 2017
First published
19 Apr 2017

Analyst, 2017,142, 1790-1799

Quantitative NMR of quadrupolar nucleus as a novel analytical method: hydrolysis behaviour analysis of aluminum ion

H. Maki, G. Sakata and M. Mizuhata, Analyst, 2017, 142, 1790 DOI: 10.1039/C7AN00067G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements