Issue 42, 2016

A bi-continuous network structure of p-DTS(FBTTh2)2/EP-PDI via selective solvent vapor annealing

Abstract

A critical requirement of small molecule non-fullerene acceptor-based solar cells for efficient charge separation and collection is the formation of interconnected phase-separated domains of 10–20 nm. The phase-separation behavior of small molecule donor 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2) and acceptor N,N′-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) was regulated by donor selective solvent vapor annealing (D-SVA), poor donor solvent vapor annealing (P-SVA) and thermal annealing (TA). It was found that the power conversion efficiency (PCE) was significantly improved from less than 0.2% up to 3.0% after D-SVA. In contrast, a limited improvement of PCE was obtained for P-SVA (1.9%) and TA (1.8%). The difference in the improvement of PCE values was attributed to the formation of a phase-separated structure and the regulation of crystallite sizes under different post treatments. The fibrous crystals of p-DTS(FBTTh2)2 were formed during D-SVA treatment while the EP-PDI component was in the form of small microcrystals, thus leading to the required interconnected phase-separated structure. As a consequence, the moderate phase-separated morphology accompanied by a pure crystalline phase with a medium size could maximize the carrier transport process without compromising exciton separation efficiency, and thus contributes to the final optimal PCE value of up to 3.0% under D-SVA. For P-SVA or TA treatment, we only observed a significant enhancement of the crystallinity of both p-DTS(FBTTh2)2 and EP-PDI components, leading to remarkable film coarsening, or even undesired large phase separation, which is detrimental to the exciton diffusion as well as exciton separation processes.

Graphical abstract: A bi-continuous network structure of p-DTS(FBTTh2)2/EP-PDI via selective solvent vapor annealing

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2016
Accepted
23 Sep 2016
First published
23 Sep 2016

J. Mater. Chem. C, 2016,4, 10095-10104

A bi-continuous network structure of p-DTS(FBTTh2)2/EP-PDI via selective solvent vapor annealing

M. Li, Q. Liang, Q. Zhao, K. Zhou, X. Yu, Z. Xie, J. Liu and Y. Han, J. Mater. Chem. C, 2016, 4, 10095 DOI: 10.1039/C6TC03061K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements