Jump to main content
Jump to site search

Issue 36, 2016
Previous Article Next Article

Tunable optical properties of OH-functionalised graphene quantum dots

Author affiliations

Abstract

Graphene oxide quantum dots (GO-QDs) have distinct optoelectronic properties for their application in bio-imaging, drug delivery and photovoltaics. Herein, the effect of OH functionalisation on the optical properties of GO-QDs is studied based on state-of-the-art theoretical simulations. Our calculations predict the effect of OH groups on ionisation potentials, light absorption and emission properties. The mechanism of fluorescence is analysed considering the role of geometry distortion and charge transfer. Moreover, selective functionalisation of positions with large electron–hole separation offers a strategy to tune the optical gap and photoluminescence properties. These results open up new opportunities for the design of GO-QDs for a wide range of applications.

Graphical abstract: Tunable optical properties of OH-functionalised graphene quantum dots

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jul 2016, accepted on 16 Aug 2016 and first published on 16 Aug 2016


Article type: Paper
DOI: 10.1039/C6TC02785G
Citation: J. Mater. Chem. C, 2016,4, 8429-8438
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Tunable optical properties of OH-functionalised graphene quantum dots

    K. R. Geethalakshmi, T. Y. Ng and R. Crespo-Otero, J. Mater. Chem. C, 2016, 4, 8429
    DOI: 10.1039/C6TC02785G

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements