Jump to main content
Jump to site search

Issue 30, 2016
Previous Article Next Article

Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles

Author affiliations

Abstract

We report the structural and magnetic properties of chemically synthesized dual-phase Co2NiGa shape memory Heusler nanoparticles (NPs). Rietveld analysis of the X-ray diffraction (XRD) data reveals a dual-phase structure for all studied Co2NiGa NPs: the B2 ordered cubic austenite (β) and the tetragonal (γ or martensite β′) phases. We find that the fraction of the tetragonal γ-phase and magnetic properties of NPs consisting of β + γ phases prepared using a heating rate of 0.5 K min−1 can be tuned by varying the Ni-content. Higher saturation magnetization and Curie temperature are observed for Co2NiGa NPs with a higher fraction of the γ-phase. Dual-phase β + γ Co2NiGa NPs exhibit the highest Curie temperature (1153 K) of all known Heusler NPs. Furthermore, the martensite β′-phase is found to coexist with the β-phase for NPs synthesized using a higher heating rate of 2 K min−1. Co2NiGa NPs of mixed β + β′ phase are paramagnetic at room temperature and exhibit low magnetization due to the presence of the martensite phase. High temperature XRD measurements of Co2NiGa NPs with β + β′ phases confirm their irreversible phase transition of the β-phase starting at a temperature of 837 K and the structural stability of the tetragonal β′-phase. The developed new synthetic method makes it possible to fabricate Co2NiGa NPs with structure and properties tailored for high temperature magnetic shape memory devices at the nanoscale.

Graphical abstract: Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Apr 2016, accepted on 05 Jul 2016 and first published on 05 Jul 2016


Article type: Paper
DOI: 10.1039/C6TC01757F
Citation: J. Mater. Chem. C, 2016,4, 7241-7252
  •   Request permissions

    Tunable structural and magnetic properties of chemically synthesized dual-phase Co2NiGa nanoparticles

    C. Wang, A. A. Levin, S. Fabbrici, L. Nasi, J. Karel, J. Qian, C. E. Viol Barbosa, S. Ouardi, F. Albertini, W. Schnelle, H. Borrmann, G. H. Fecher and C. Felser, J. Mater. Chem. C, 2016, 4, 7241
    DOI: 10.1039/C6TC01757F

Search articles by author

Spotlight

Advertisements