Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Tuesday 19th September 2017 from 8.00am to 4.00pm (BST).

During this time our website performance may be temporarily affected. If you have any questions please use the feedback button available under our menu button. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 43, 2016
Previous Article Next Article

A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis

Author affiliations

Abstract

Although the impact of composites based on Ti-doped calcium phosphate glasses is low compared with that of bioglass, they have been already shown to possess great potential for bone tissue engineering. Composites made of polylactic acid (PLA) and a microparticle glass of 5TiO2–44.5CaO–44.5P2O5–6Na2O (G5) molar ratio have already demonstrated in situ osteo- and angiogenesis-triggering abilities. As many of the hybrid materials currently developed usually promote osteogenesis but still lack the ability to induce vascularization, a G5/PLA combination is a cost-effective option for obtaining new instructive scaffolds. In this study, nanostructured PLA-ORMOGLASS (organically modified glass) fibers were produced by electrospinning, in order to fabricate extra-cellular matrix (ECM)-like substrates that simultaneously promote bone formation and vascularization. Physical–chemical and surface characterization and tensile tests demonstrated that the obtained scaffolds exhibited homogeneous morphology, higher hydrophilicity and enhanced mechanical properties than pure PLA. In vitro assays with rat mesenchymal stem cells (rMSCs) and rat endothelial progenitor cells (rEPCs) also showed that rMSCs attached and proliferated on the materials influenced by the calcium content in the environment. In vivo assays showed that hybrid composite PLA-ORMOGLASS fibers were able to promote the formation of blood vessels. Thus, these novel fibers are a valid option for the design of functional materials for tissue engineering applications.

Graphical abstract: A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Aug 2016, accepted on 22 Sep 2016 and first published on 22 Sep 2016


Article type: Paper
DOI: 10.1039/C6TB02162J
Citation: J. Mater. Chem. B, 2016,4, 6967-6978
  • Open access: Creative Commons BY license
  •   Request permissions

    A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis

    N. Sachot, O. Castaño, H. Oliveira, J. Martí-Muñoz, A. Roguska, J. Amedee, M. Lewandowska, J. A. Planell and E. Engel, J. Mater. Chem. B, 2016, 4, 6967
    DOI: 10.1039/C6TB02162J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements