Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution†
Abstract
Partially replacing Pb with Sn in organic–inorganic lead halide perovskites has been proven as a promising approach to reduce environmental toxicity and develop low bandgap (as low as 1.20 eV) perovskite solar cells (PVSCs) beneficial for constructing perovskite-based tandem solar cells. In this work, we demonstrated that partially replacing MA+ or FA+ with Cs+ in a Pb–Sn binary perovskite system can effectively retard the associated crystallization rate to facilitate homogenous film formation, subsequently resulting in enhanced device performance and stability, especially for high Sn-containing compositions. The representative MA0.9Cs0.1Pb0.5Sn0.5I3 PVSC with a low Eg of 1.28 eV not only achieves an improved efficiency up to 10.07% but also possesses much improved thermal and ambient stability as compared to the pristine MAPb0.5Sn0.5I3 PVSC showing poorer efficiency (6.36%) and stability. Similarly, when Cs was introduced into FAPb1−xSnxI3 perovskite, enhanced performance was observed, affirming its general applicability and beneficial role in mediating the crystal growth and film formation of Pb–Sn binary perovskites.
Please wait while we load your content...