Issue 13, 2016

Ultrafast laser-assisted synthesis of hydrogenated molybdenum oxides for flexible organic solar cells

Abstract

A novel method to synthesize a hydrogenated molybdenum oxide (HyMoO3−x) thin film by irradiation of photons using a KrF laser (λ = 248 nm) on an ammonium heptamolybdate ((NH4)6Mo7O24·4H2O) precursor layer is demonstrated. The laser-assisted synthesis is simple, and can be conducted in an ambient atmosphere without damaging the underlying bottom electrode and plastic substrate. The exposure time (30 ns) is extremely short compared to thermal annealing (>3 min). Because the high-energy photons are absorbed by the MoO3 layer and provide the activation energy for the reaction, the hydrogen atoms that dissociate from the ammonium molecules bond to the MoO3; this process yields a HyMoO3−x thin-film. By controlling the laser energy, the stoichiometry of the HyMoO3−x layer can be manipulated to simultaneously obtain advantageous electrical properties of both high work function (5.6 eV) and electrical conductivity (9.9 μS cm−1). The HyMoO3−x hole transport layer (HTL) is successfully demonstrated on flexible top-illuminated PTB7:PCBM organic solar cells (OSCs). This OSC has good mechanical flexibility, and 75% higher short-circuit current than the device with a PEDOT:PSS HTL. Finite-domain time-difference simulations were conducted to verify the enhancement of the photocurrent. The thin layer of HyMoO3−x was proven to be suitable for the microcavity condition which allows a resonant wavelength match to the PTB7:PCBM active layer.

Graphical abstract: Ultrafast laser-assisted synthesis of hydrogenated molybdenum oxides for flexible organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2015
Accepted
05 Feb 2016
First published
16 Feb 2016

J. Mater. Chem. A, 2016,4, 4755-4762

Ultrafast laser-assisted synthesis of hydrogenated molybdenum oxides for flexible organic solar cells

W. J. Dong, J. Ham, G. H. Jung, J. H. Son and J. Lee, J. Mater. Chem. A, 2016, 4, 4755 DOI: 10.1039/C5TA10032A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements