Jump to main content
Jump to site search

Issue 18, 2016
Previous Article Next Article

Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts

Author affiliations

Abstract

MoS2/carbon hybrid materials have been shown to be promising non-precious metal electrocatalysts for the hydrogen evolution reaction (HER). However, a facile method for synthesizing them is still a big challenge, let alone patterning them through a design. In this work, we present a novel strategy to synthesize and pattern MoS2/carbon hybrid materials as electrocatalysts for the HER through a one-step direct laser writing (DLW) method under ambient conditions. DLW on citric acid–Mo–S precursors leads to the in situ synthesis of small-sized MoS2 nanoparticles (NPs) anchored to the carbon matrix. Largely exposed catalytically active sites from the MoS2 NPs and the synergetic effect from the carbon matrix make the hybrid materials exhibit superior catalytic performance and stability for the HER in acidic solutions. Through computer-controlled laser beams we can design arbitrary patterns made of these catalysts on targeted substrates, which will open a new route for fabricating on-chip microfuel cells or catalytic microreactors.

Graphical abstract: Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Nov 2015, accepted on 01 Feb 2016 and first published on 05 Feb 2016


Article type: Communication
DOI: 10.1039/C5TA09322H
Citation: J. Mater. Chem. A, 2016,4, 6824-6830
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts

    H. Deng, C. Zhang, Y. Xie, T. Tumlin, L. Giri, S. P. Karna and J. Lin, J. Mater. Chem. A, 2016, 4, 6824
    DOI: 10.1039/C5TA09322H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements