Issue 44, 2016

Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses

Abstract

Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion. Developing new probes that can readily measure surface diffusion can help study the effect of parameters such as chemical structure, intermolecular interaction, molecules' shape and size on the enhanced surface diffusion. In this study, we develop a novel probe that significantly simplifies these types of studies. Tobacco mosaic virus (TMV) is used as probe particle to measure surface diffusion coefficient of molecular glass N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD). The evolution of the meniscus formed around TMV is probed as a function of time at various temperatures. TMV has a well-defined, mono-dispersed, cylindrical shape, with a large aspect-ratio (average diameter of 16.6 nm, length of 300 nm). As such, the shape of the meniscus around the center of TMV is semi-two dimensional, which compared to using a nanosphere as probe, increases the driving force for meniscus formation and simplifies the analysis of surface diffusion. We show that under these conditions, after a short transient time the shape of the meniscus is self-similar, allowing accurate determination of the surface diffusion coefficient. Measurements at various temperatures are then performed to investigate the temperature dependence of the surface diffusion coefficient. It is found that surface diffusion is greatly enhanced in TPD and has a lower activation barrier compared to the bulk counterpart. These observations are consistent with previous studies of surface diffusion on molecular glasses, demonstrating the accuracy of this method.

Graphical abstract: Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2016
Accepted
14 Oct 2016
First published
14 Oct 2016

Soft Matter, 2016,12, 9115-9120

Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses

Y. Zhang, R. Potter, W. Zhang and Z. Fakhraai, Soft Matter, 2016, 12, 9115 DOI: 10.1039/C6SM01566B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements